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Passive Weather Radar

Passive Radar: Introduction

• Improving the detection performance of a target can be important for military
and surveillance operations.

• A radar network consisting of non-cooperative illuminators of opportunity (IO)
and one or several passive receivers is referred to as a passive radar network.

• Non-cooperative IO include:
I FM radio waves
I Television and audio broadcast signals
I Satellite and mobile communication based signals
I Weather radar electromagnetic waves
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Passive Weather Radar

Passive Radar: Advantages and Challenges
Advantages:

• Smaller, lighter, and cheaper over active radars
• Less prone to jamming
• Resilience to anti-radiation missiles
• Stealth operations
• ...

Challenges:

• Rely on third-party illuminators
• Waveforms out of control which leads to poor spatial/doppler resolution
• ...
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Passive Weather Radar

Passive Bistatic Radar: Geometry of EMVS Receiver

• The signal arriving at the receiver consists of the signal from the non-cooperative
transmitter (transmitter-to-receiver), which is referred to as the reference path,
and the echoes generated by the reflection of the transmitted signal from the
target (target-to-receiver), which are referred to as the surveillance path.

Tx

Rx

Figure 1: Spatial and temporal filtering techniques isolate the reference from the surveillance channel.
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Passive Weather Radar

Passive Radar: Existing Methods
Cross ambiguity function (CAF):

• The transmitted signal is estimated from the reference channel, and
cross-correlated with the signal in the surveillance channel. The resulting
function called the cross-ambiguity function which mimics a matched filter
output, and is given as

χ(η, ν) =
∫ +∞

−∞
ys(t)y∗r (t− η)ej2πνtdt, (1)

where ys(t) and yr(t) are the surveillance and refernece channel received signals,
and η and ν represents the target delay and Doppler, respectively.

Generalized likelihood ratio test (GLRT):

• Only the surveillance channel is considered, due to which the detector does not
require knowledge of the transmitter position or the reference channel
signal-to-noise ratio (SNR).
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Passive Weather Radar

Passive Radar: Drawbacks
Cross ambiguity function (CAF):

• When a good estimate of the reference channel signal is not available, which
occurs due to propagation losses, presence of clutter, and blockage or
non-availability of the line-of-sight, the performance of the CAF-based detector
decreases.

Generalized likelihood ratio test (GLRT):

• The existing GLRT-based methods do not consider the effect of clutter in the
surveillance path.

• For continuous IOs such as DVB-T transmitters, signal-dependent clutter may
arise due to multipath reflections of the surveillance signal. For weather
surveillance radars, signal-dependent clutter occurs due to the hydrometeors
present in the range gate of interest.
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Passive Weather Radar

Weather Radar as Illuminator of Opportunity: Motivation
Coverage area:

• There are 150 nearly identical dual-polarized S-band Doppler weather
surveillance radars in the USA, with an observation range of 230− 460 km and a
range resolution of 0.25− 1 km, depending on the mode of operation.

Modeling:

• Lack of statistical signal model that considers signal-dependent clutter model for
target detection with weather surveillance radar as IO.

Polarized receivers:

• Exploiting the polarimetric information about the target with the help of
diversely polarized antennas such as electromagnetic vector sensors (EMVS).
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Passive Weather Radar

Passive Radar: Our Contributions

• We propose a passive bistatic network, with weather surveillance radar as the IO
and electromagnetic vector sensor (EMVS) as the receiver. To the best of our
knowledge, no previous work on passive bistatic radar addressed employing a
weather radar for target detection.

• We believe we are the first to consider polarization information for mitigating
signal-dependent clutter and improve detection in a passive radar, with weather
surveillance radar as IO.

• We propose a maximum likelihood (ML) solution to extract the signal subspace
from the received data contaminated by the clutter interference. We also
propose a generalized likelihood ratio test (GLRT) detector that is robust to
inhomogeneous clutter.

• We provide the exact distribution of the test statistic for the asymptotic case and
evaluate its performance loss by considering a reduced set of data.
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Passive Weather Radar

Problem Description: Bistatic Passive Polarimetric Radar

Goal: Target detection in a bistatic passive polarimetric radar network, with weather
surveillance radar as our illuminator of opportunity.

Tx

Rx

Figure 2: In weather surveillance radar, due to the high elevation angle and corresponding volume coverage
pattern (VCP), minimal direct-path signal is observed by the receiver located on the ground in the
reference channel.
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Passive Weather Radar

Signal Model: Electromagnetic Vector Sensors

• Let (θ, φ) denote the azimuth and elevation angle, respectively, of a hypothesized
target located at p = [px, py, pz]T ∈ R3 and traveling with a velocity
ṗ = [ṗx, ṗy, ṗz]T ∈ R3, as seen by the receiver. The steering matrix of an EMVS
denoted as Dθ,φ ∈ R6×2 can be parameterized1 as

Dθ,φ =


− sin θ − cos θ sinφ

cos θ − sin θ sinφ

0 cosφ
− cos θ sinφ sinφ

− sin θ sinφ − cosφ
cosφ 0

 . (2)

The inner product of the steering matrix DH
θ,φDθ,φ = kI6, where k = 2 for

EMVS2.

1A. Nehorai, E. Paldi, “Vector-sensor array processing for electromagnetic source localization”, IEEE
Transactions on Signal Processing, vol. 42, pp. 376–398, Feb. 1994.

2For a tripole antenna and a classical polarization radar using vertical and horizontal linear polarization,
k = 1.
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Passive Weather Radar

Signal Model: Scattering Matrix and Polarization

• Let Sp ∈ C2×2 and Sc ∈ C2×2 denote the hypothesized target and clutter
scattering matrix coefficients, respectively, as seen by the receiver located at
coordinates r = [rx, ry, rz]T ∈ R3, where Sp and Sc are parameterized as

Sp =
[
σhh

p σhv
p

σvh
p σvv

p

]
and Sc =

[
σhh

c σhv
c

σvh
c σvv

c

]
. (3)

• The polarimetric representation of the transmitted complex bandpass signal is
given by Qαwβs(t)ejΩCt where

Qα =
[

cosα sinα

− sinα cosα

]
, wβ =

[
cosβ
j sinβ

]
, (4)

and α and β represent the orientation and ellipticity of the transmitted signal,
respectively, and ΩC is the carrier frequency.
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Passive Weather Radar

Signal Model: EMVS Receiver

• The signal s(t) is the complex baseband signal, t ∈ [0, T ], where T/2 is the pulse
repetition interval (PRI) of a dual-polarized transmitter, which sends sequentially
two pulses of orthogonal polarization.

• The complex envelope signal at the output of the quadrature receiver can be
expressed as

y(t) = Dθ,φSpQαwβs(t− τp)ejΩDte−jΩCτp︸ ︷︷ ︸
target signal

+Dθ,φScQαwβs(t− τc)e−jΩCτc︸ ︷︷ ︸
clutter signal

+ e(t)︸︷︷︸
noise

,
(5)

where

ΩD = ΩC

c

[
(r − p)T ṗ
‖r − p‖ + (p− t)T ṗ

‖p− t‖

]
, and τp = ‖r − p‖+ ‖p− t‖

c
. (6)

• Here, τp and τc represents target and the clutter delay, respectively, ΩD
represents the Doppler shift in the signal, c is the speed of the propagation of the
electromagnetic wave.
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Passive Weather Radar

Signal Model: EMVS Receiver (Cont.)

• We assume that τc is known and is approximately equal to the time it takes for
the echo signal to travel from the center of the range cell to the receiver.

• It is reasonable to assume that the receiver has a good prior knowledge of the
Doppler frequency shift produced by clutter through Level II and Level III
weather radar data products, which are available for commercial applications and
updated regularly.

• Based on this assumptions, τp = τc + ∆τp, where ∆τp accounts for the shift in
the target’s position from the center of the range cell. Compensating for the
absolute phase term e−jΩCτc , the received signal in (5) can be written as

y(t) = Dθ,φSpQαwβs(t− τp)ejΩDte−jΩC∆τp︸ ︷︷ ︸
target signal

+Dθ,φScQαwβs(t− τc)︸ ︷︷ ︸
clutter signal

+ e(t)︸︷︷︸
noise

.
(7)
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Passive Weather Radar

Signal Model: EMVS Receiver (Cont.)

• We introduce the vectorized scattering matrix coefficients,
xp = e−jΩC∆τp [σhhp , σvvp , σhvp , σvhp ]T and xc = [σhhc , σvvc , σhvc , σvhc ]T , that
denote the target and clutter reflectivity coefficients, respectively.

• Let εα,β , [ε1, ε2]T = Qαwβ denote the polarization vector. We define
polarization matrix3 as

ε̄α,β =
[
ε1 0 ε2 0
0 ε2 0 ε1

]
, (8)

where rank(ε̄α,β) = 2. Then, the received signal in (7) can be rewritten as

y(t) = Dθ,φε̄α,βxps(t− τp)ejΩDt +Dθ,φε̄α,βxcs(t− τc) + e(t). (9)
• Discretization: The received signal is sampled at a fast-time sampling interval ∆t

seconds.

y[n] = Dθ,φε̄α,βxps[n− np]ejωDn +Dθ,φε̄α,βxcs[n− nc] + e[n]. (10)
where np = τp/∆t, nc = τc/∆t, and ωD = ΩD∆t.

3M. Hurtado and A. Nehorai, “Polarimetric detection of targets in heavy inhomogeneous clutter”, IEEE
Transactions on Signal Processing, vol. 56, pp. 1349–1361, Apr. 2008.
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Passive Weather Radar

Signal Model: EMVS Receiver (Cont.)
horizontal polarization

vertical polarization

PW

T

t

Figure 3: Dual-polarized transmitter. Weather surveillance radars (WSR-88D) employ alternating
transmission of horizontal and vertical polarized waveforms.

horizontal polarization
vertical polarization

PW

T

trange gate

Figure 4: An illustration of the sampling scheme.
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Passive Weather Radar

Signal Model: EMVS Receiver (Cont.)
• The received signal4 in (10) can be represented as

y = (Dnp,ωD ⊗Dθ,φ)(s⊗ ε̄α,β)xp︸ ︷︷ ︸
target signal

+ (Dnc,0 ⊗Dθ,φ)(s⊗ ε̄α,β)xc︸ ︷︷ ︸
clutter signal

+ e︸︷︷︸
noise

= BSxp +ASxc + e. (11)

where
I s = [s(0), . . . , s(N − 1)]T is the transmitted signal vector,
I S = s⊗ ε̄α,β ∈ CM×P is the signal information matrix,
I Dn,ω = LN (ω)FHN LN (−2πn/N)FN is the delay-Doppler matrix5,
I FN ∈ CN×N denote the unitary discrete Fourier transform (DFT) matrix,
I LN (x) = diag{ej(0)x, ej(1)x, . . . , ej(N−1)x} is a diagonal matrix,
I A = Dnc,0 ⊗Dθ,φ ∈ CL×M and AHA = kIM , and
I B = Dnp,ωD ⊗Dθ,φ ∈ CL×M and BHB = kIM .

4For an EMVS receiver, L = 6N , M = 2N , P = 4, and k = 2. For a tripole antenna L = 3N ,
M = 2N , P = 4, and k = 1. For a classical polarization radar using vertical and horizontal linear
polarization L = 2N , M = 2N , P = 4, and k = 1.

5D. E. Hack, L. K. Patton, B. Himed and M. A. Saville, “Centralized passive MIMO radar detection
without direct-path reference signals,” in IEEE Transactions on Signal Processing, vol. 62, pp. 3013-3023,
June 2014.
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Passive Weather Radar

Signal Model and Statistics

• Based on the statistics of the target, clutter, and noise as mentioned above, the
received signal vector at the receiver for a moving target, denoted as yd ∈ CL×1

is a complex Gaussian distributed as

H0 : yd ∼ CN
(
0,ASΣSHAH + σIL

)
H1 : yd ∼ CN

(
BSµ,ASΣSHAH + σIL

)
,

(12)

where
I d represents the snapshot index,
I S is the signal information matrix is deterministic and unknown,
I scattering coefficients of the clutter, xc, are assumed to be distributed as

zero mean complex Gaussian random vectors with unknown covariance
matrices denoted as Σ,

I polarimetric scattering matrix of the target is rearranged in a coefficient
vector, which is assumed deterministic and unknown, i.e., E[xp] = µ is
unknown, and

I receiver noise vector, e, is a zero mean complex Gaussian random vector
with covariance σIL, where we assume σ is known.
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Passive Weather Radar

Generalized Likelihood Ratio Test

• In GLRT, the parameters which are assumed to be deterministic and unknown,
are replaced with their maximum likelihood estimate (MLE). This method may
not always be optimal, but it works well in practice. The GLRT detector is
written as

max
{Σ,µ,S}

ln f1(Σ,µ,S)− max
{Σ,S}

ln f0(Σ,S)

= ln f1(Σ̂1, µ̂, Ŝ)− ln f0(Σ̂0, Ŝ) ≷ lnκ,
(13)

where ln f0(Σ,S) and ln f1(Σ,µ,S) are the log-likelihood ratio of the probability
density functions under each hypothesis in (12), and κ is the detection threshold.
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Passive Weather Radar

Lemma: MLE of the Clutter Covariance Matrix
Lemma 1. The Hermitian matrix Σ that maximizes

−D
[
L lnπ + ln |Γ|+ Tr{Γ−1R}

]
where Γ = ASΣSHAH + σIL is the true covariance matrix, R is the sample
covariance matrix, L is the number of samples, and D is the number of snapshots, is
given as

Σ̂ = (AS)†R(AS)†H − σ(SHAHAS). (14)

Proof. See Theorem6 1.1 (or) Appendix7 A.

6P. Stoica and A. Nehorai, “On the concentrated stochastic likelihood function in array signal
processing”, Circ. Sys. Signal Processing, Vol. 14, No. 5, pp. 669-674, 1995.

7G.V. Prateek, M. Hurtado and A. Nehorai, “Target detection using weather radars and
electromagnetic vector sensors,” Signal Processing, Vol. 137, pp. 387-397, Aug. 2017.
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Passive Weather Radar

Lemma: Trace Approximation
Lemma 2. For sufficiently large number of snapshots D,

σ−1 Tr{P⊥ASR} ≈ L− P

where P⊥AS is the orthogonal projection matrix and is given as

P⊥AS = IL − PAS = IL −AS(SHAHAS)−1SHAH .

and rank(S) = rank(PAS) = P .
Proof. The sample covariance matrix converges to the true covariance matrix in an
asymptotic sense, as the number of snapshots increases. We replace the sample
covariance matrix R in σ−1 Tr{P⊥ASR} with Γ, and then expand as follows8:

σ−1 Tr{P⊥ASR} ≈ σ−1 Tr{P⊥ASΓ}, for D � L

= σ−1 Tr{(IL − PAS)Γ}
= σ−1 Tr{Γ− PASΓ}
= L− P.

8G.V. Prateek, M. Hurtado and A. Nehorai, “Target detection using weather radars and
electromagnetic vector sensors,” Signal Processing, Vol. 137, pp. 387-397, Aug. 2017.
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Passive Weather Radar

Null Hypothesis

• Based on (12), the loglikelihood function with respect to the unknown
parameters S and Σ under the hypothesis H0 is expressed as

ln f0(Σ,S) = −D
[
L lnπ + ln |Γ|+ Tr{Γ−1R0}

]
, (15)

where D is the number of snapshots, and R0 is the sample covariance matrix
under hypothesis H0 given as

R0 = 1
D

D∑
d=1

ydy
H
d , D � L. (16)

• Applying Lemma 1 and Lemma 2, the loglikelihood function can be further
simplified as

ln f0(Σ̂0,S) ≈ −D
[
L+ L lnπ + (L− P ) lnσ + ln

∣∣SHAHR0AS
∣∣

− ln |SHAHAS|
]
.

(17)
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Passive Weather Radar

Lemma: MLE of the Signal Information Matrix
Lemma 3. The Unitary matrix S that maximizes

−D
[
L+ L lnπ + (L− P ) lnσ + ln

∣∣SHAHRAS∣∣− ln |SHAHAS|
]
,

is given by W1, where WΞWH is the orthogonal factorization of AHRA, W is an
orthogonal matrix partitioned as [W1,W2], such that W1 ∈ CM×P and
W2 ∈ CM×(L−P ), and W1 represents the eigenvectors corresponding to P largest
eigenvalues of AHRA.
Proof. See Appendix9 C.

9G.V. Prateek, M. Hurtado and A. Nehorai, “Target detection using weather radars and
electromagnetic vector sensors,” Signal Processing, Vol. 137, pp. 387-397, Aug. 2017.
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Passive Weather Radar

Null Hypothesis (Cont.)

• Let UΩUH be the orthogonal factorization of AHR0A, where U contains
orthogonal column vectors such that UUH = IM , and Ω is a diagonal matrix
with eigenvalues of AHR0A as its diagonal entries, arranged in decreasing order.

• We partition the orthogonal column vectors of U as
[
U1 U2

]
, such that

U1 ∈ CM×P , U2 ∈ CM×(L−P ).

• Applying Lemma 3, we get

ln f0(Σ̂0, Ŝ) = −D [L+ L lnπ + (L− P ) lnσ − ln |kIP |

+ ln
∣∣UH

1 A
HR0AU1

∣∣] . (18)
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Passive Weather Radar

Alternative Hypothesis

• Following a similar approach, the loglikelihood function with respect to the
unknown parameters Σ, µ, and S under hypothesis H1 in (12), is expressed as

ln f1(Σ,µ,S) = −D
[
L lnπ + ln |Γ|+ Tr{Γ−1R1}

]
, (19)

where R1 is the sample covariance matrix under H1, given as

R1 = 1
D

D∑
d=1

(yd −BSµ)(yd −BSµ)H D � L. (20)

• Applying Lemma 1 and Lemma 2, and further simplifying, we get

ln f1(Σ̂1,µ,S) ≈ −D
[
L+ L lnπ + (L− P ) lnσ − ln

∣∣SHAHAS∣∣
+ ln

∣∣SHAHR1AS
∣∣] . (21)
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Passive Weather Radar

Lemma: MLE of the Target Scattering Matrix Coefficient
Lemma 4. The maximum likelihood estimate of ln

∣∣SHAHR1AS
∣∣, where

R1 = 1
D

D∑
d=1

(yd −BSµ)(yd −BSµ)H

is given as µ̂ = (BS)†ȳ, where ȳ = 1
D

∑D

d=1 yd.

Proof. See Appendix10 D.

Using Lemma 4, we get the following approximation

ln
∣∣SHAHR1AS

∣∣ ≈ ln
∣∣SHAHR2AS

∣∣ (because ȳ → BSµ and P⊥BSȳ ≈ 0) (22)

where R2 , (R0 − ȳȳH) = 1
D

∑D

d=1(yd − ȳ)(yd − ȳ)H .

10G.V. Prateek, M. Hurtado and A. Nehorai, “Target detection using weather radars and
electromagnetic vector sensors,” Signal Processing, Vol. 137, pp. 387-397, Aug. 2017.
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Passive Weather Radar

Alternative Hypothesis (Cont.)

• Let VΥV H be the orthogonal factorization of AHR2A, where V represents the
orthogonal column vectors such that V V H = IM , and Υ is a diagonal matrix
with eigenvalues of AHR2A as its diagonal entries, arranged in descending
order.

• We partition the orthogonal column vectors of V as
[
V1 V2

]
, such that

V1 ∈ CM×P , V2 ∈ CM×(L−P ).

• Applying Lemma 3, we get

ln f1(Σ̂1, µ̂, Ŝ) = −D [L+ L lnπ + (L− P ) lnσ − ln |kIP |

+ ln
∣∣V H

1 AHR2AV1
∣∣] . (23)
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Passive Weather Radar

GLRT Detector

• Substituting (18) and (23) into (13), the GLRT is given as

D
[
ln
∣∣UH

1 A
HR0AU1

∣∣− ln
∣∣V H

1 AHR2AV1
∣∣] ≷ lnκ. (24)

• The GLRT in (24) can be rewritten as

D
[
ln(1 + ȳHAU1(UH

1 A
HR2AU1)−1UH

1 A
H ȳ)+

ln
∣∣UH

1 A
HR2AU1

∣∣− ln
∣∣V H

1 AHR2AV1
∣∣] ≷ lnκ.

(25)

• The matrices U1 and V1 represent the eigenvectors corresponding to the P
largest eigenvalues of AHR0A and AHR2A, respectively. When we have a
large number of snapshots, both R0 and R2 converge to the true covariance
matrix, Γ. Hence, the eigenvectors corresponding to P largest eigenvalues of
AHR0A and AHR2A also converge.
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Passive Weather Radar

GLRT Detector (Cont.)

• Based on this asymptotic property of sample covariance matrix we replace V1
with U1 in (25). Then, the GLRT statistic can be written as

D[ln(1 + ȳHAU1(UH
1 A

HR2AU1)−1UH
1 A

H ȳ)] ≷ lnκ. (26)

• Let zd = UH
1 A

Hyd. The new sample mean and sample covariance are
z̄ = 1

D

∑D

d=1 zd and Rz = 1
D

∑D

d=1(zd − z̄)(zd − z̄)H , respectively. Hence, the
decision test statistic in (26) is given as

D ln(1 + z̄HR−1
z z̄) ≷ lnκ. (27)

• Removing the logarithm and ignoring the constant term, the equivalent test
statistic is

ξ = z̄HR−1
z z̄. (28)

INSPIRE Lab, CSSIP 33



Passive Weather Radar

Distribution of Test Statistic

• The test statistic in (28) is distributed as follows:

2(D − P )
2P ξ ∼

{
F2P,2(D−P ), under H0

F2P,2(D−P )(λ), under H1
. (29)

• As D increases, the degrees of freedom ν2 also increases, and the F-distribution
Fν1,ν2 can be approximated as a chi-square distribution denoted by χ2

ν1 .

2(D − P )ξ ∼
{
χ2

2P , under H0

χ2
2P (λ), under H1

, (30)

• The non-centrality parameter is given as

λ = 2DµHSHBHAU1[UH
1 A

HΓAU1]−1UH
1 A

HBSµ (31)

• The probability of false alarm does not depend on the transmitted signal, clutter,
and noise, indicating the constant false alarm rate (CFAR) of the detector.
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Passive Weather Radar

Numerical Results: Simulation Settings
Problem:
Detect a moving target in the presence of signal-dependent clutter.

Transmitter specifications:

Table 1: Dual-polarized transmitter specifications with velocity as the characteristic of interest.

Parameter Value
Carrier frequency 2.7 GHz
Bandwidth 0.63 MHz
Beam width 0.96◦

Pulse width 1.5µ s (short pulse)
Pulse repetition frequency 322− 1282 Hz
Range of Observation 230 km (for velocity)
Range resolution 250 m (for velocity)
Orientation and ellipticity (π/4, 0) and (−π/4, 0)

Target and receiver parameters:
• EMVS receiver located at (3.46 km, 2 km)
• The target to be located at the origin, moving with a velocity of 30 m / s in the

positive y-axis direction
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Passive Weather Radar

Numerical Results: Definitions

Measurement parameters:

The definitions of signal-to-noise ratio (SNR) and clutter-to-noise ratio (CNR) are
given as

SNR (in dB) = 10 log10
µHSHSµ

σ
(32)

CNR (in dB) = 10 log10
Tr{Σ}
σ

. (33)

The target scattering coefficients are generated from a CN (0, 1) distribution.
Similarly, the entries of the clutter covariance matrix are generated from a CN (0, 1)
distribution, and then scaled to satisfy the required SNR and CNR, respectively.
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Passive Weather Radar

Numerical Results: Distribution of Test Statistic

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 5: Normalized histogram (empirical PDF) and the analytic PDF under H0 and H1, with
SNR = −10 dB, CNR = 10 dB, number of samples per snapshot N = 8, and number of snapshots
D = 200.

Observation:
The empirical distribution closely matches the analytic distribution.
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Passive Weather Radar

Numerical Results: Performance of the Detector

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Analytical: SNR =-18 dB
Monte Carlo: SNR =-18 dB
Analytical: SNR =-15 dB
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Analytical: SNR =-12 dB
Monte Carlo: SNR =-12 dB

Figure 6: ROC curves for different values of SNR. The solid line plot and the scattered plot indicate the
probability of detection obtained from the analytical distribution and the empirical distribution,
respectively.

Observation:
The performance of the detector improves as the SNR increases.
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Numerical Results: Stationary vs Moving Target
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Figure 7: Probability of detection curves across different values of SNR values keeping the probability of
false alarm constant. The solid line plot and the dashed line plot indicate the probability of detection
obtained from the analytical distribution for a moving (MT) and a stationary target (ST), respectively.
The scatter plots outlining the solid and dashed line curves indicate the probability of detection obtained
from the empirical distribution for the given value of probability of false alarm.

Observation:
For a stationary target, the improvement in the performance of the detector is
attributed to the fact that the inner product of the delay-Doppler matrix is kIM .
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Numerical Results: SNR vs CNR

(a) Analytical distribution. (b) Empirical distribution.

Figure 8: Probability of detection for different values of SNR and CNR. The probability of false alarm is
fixed at 10−3. The number of samples per snapshot N = 8 and number of snapshots D = 200. The
probability of detection is represented using gray scale pixels, where the darker pixels indicate higher values
of probability of detection.

Observation:
We observe that the detector performance under both analytical and empirical
distribution match closely. Further, we notice a transition phase at SNR = −10 dB,
for both analytical and empirical, probability of detection plots.
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Numerical Results: Comparison with the Oracle Detector
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Figure 9: The solid line plot and the dashed line plot indicate the probability of detection obtained from
the analytical distribution for stationary target when the signal information matrix is known and unknown,
respectively. The filled and hollow marker scatter plots outlining the solid and dashed line curves indicate
the probability of detection obtained from the empirical distribution for unknown and known signal
information matrix, respectively.

Observation:
The proposed detector closely matches the performance of the oracle detector,
however, it is important to note that the oracle detector does not require large
number of snapshots.
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Numerical Results: Number of Snapshots
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Figure 10: Probability of detection curves across different SNR values for varying number of snapshots.
The solid line plot and the scattered plot indicate the probability of detection obtained from the analytical
distribution and the empirical distribution, respectively. The number of samples per snapshot N = 8 and
number of snapshots D = {50, 100, 200}, with a background CNR = 10 dB.

Observation:
The performance of the detector improves as the number of snapshots increases. As
the number of snapshots increases, the integration time to compute the probability of
detection increases, thereby improving the performance of the detector.
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Numerical Results: Compare Sensors

-14 -12 -10 -8 -6 -4 -2 0 2 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ST,CONV

ST,TRIP

ST,EMVS

MT,CONV

MT,TRIP

MT,EMVS

Figure 11: Probability of detection curves across different values of SNR values keeping the probability of
false alarm constant. The solid line and dashed line plot indicate the probability of detection for a
stationary target (ST) and a moving target (MT), respectively, for three types of sensors namely,
electromagnetic vector sensors (EMVS), tripole antenna (TRIP), and conventional orthogonal antenna
(CONV).

Observation:
For a moving target, the probability of detection does not vary based on the choice of
the sensor because the entries of the inner product of BHA in the expression of the
non-centrality parameter in (31) are not close to Identity matrix.
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Conclusions

• Presented a GLRT-based detector for a passive radar network using EMVS, with
weather radar as signal of opportunity, when the direct path signal from the
transmitter is not available.

• Considered the effect of signal-dependent clutter in the surveillance channel, and
derived a GLRT detector for a bistatic scenario.

• Demonstrated the CFAR property of the detector, where the expression of the
test statistic under the null-hypothesis is not dependent on the transmitted
signal, clutter, and noise.

• Studied the performance of the proposed detector in different bistatic scenarios,
by varying the network settings such as, number of snapshots, SNR, and CNR.
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Future Work

• Extend our analysis to multi-target and extended target scenario in a passive
radar network.

• Consider a passive multistatic system formed by several receivers.

• Develop a centralized approach for target detection in the presence of
inhomogeneous signal-dependent clutter.

• Address passive radar networks in the presence of multiple transmitters of
opportunity.
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Thank you!
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